Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Ann Med ; 54(1): 3234-3249, 2022 12.
Article in English | MEDLINE | ID: covidwho-2120889

ABSTRACT

BACKGROUND: Endothelial dysfunction has been proposed to play a key role in the pathogenesis of coronavirus disease 2019 (COVID-19) and its post-acute sequelae. Flow-mediated dilation (FMD) is recognized as an accurate clinical method to assess endothelial function. Thus, we performed a meta-analysis of the studies evaluating FMD in convalescent COVID-19 patients and controls with no history of COVID-19. METHODS: A systematic literature search was conducted in the main scientific databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using the random effects method, differences between cases and controls were expressed as mean difference (MD) with 95% confidence intervals (95% CI). The protocol was registered on PROSPERO with reference number CRD42021289684. RESULTS: Twelve studies were included in the final analysis. A total of 644 convalescent COVID-19 patients showed significantly lower FMD values as compared to 662 controls (MD: -2.31%; 95% CI: -3.19, -1.44; p < 0.0001). Similar results were obtained in the sensitivity analysis of the studies that involved participants in either group with no cardiovascular risk factors or history of coronary artery disease (MD: -1.73%; 95% CI: -3.04, -0.41; p = 0.010). Interestingly, when considering studies separately based on enrolment within or after 3 months of symptom onset, results were further confirmed in both short- (MD: -2.20%; 95% CI: -3.35, -1.05; p < 0.0001) and long-term follow-up (MD: -2.53%; 95% CI: -4.19, -0.86; p = 0.003). Meta-regression models showed that an increasing prevalence of post-acute sequelae of COVID-19 was linked to a higher difference in FMD between cases and controls (Z-score: -2.09; p = 0.037). CONCLUSIONS: Impaired endothelial function can be documented in convalescent COVID-19 patients, especially when residual clinical manifestations persist. Targeting endothelial dysfunction through pharmacological and rehabilitation strategies may represent an attractive therapeutic option.Key messagesThe mechanisms underlying the post-acute sequelae of coronavirus disease 2019 (COVID-19) have not been fully elucidated.Impaired endothelial function can be documented in convalescent COVID-19 patients for up to 1 year after infection, especially when residual clinical manifestations persist.Targeting endothelial dysfunction may represent an attractive therapeutic option in the post-acute phase of COVID-19.


Subject(s)
COVID-19 , Humans , Endothelium
2.
Biomedicines ; 10(4)2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1820167

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a worldwide emergency, until the declaration of the pandemic in March 2020. SARS-CoV-2 could be responsible for coronavirus disease 2019 (COVID-19), which goes from a flu-like illness to a potentially fatal condition that needs intensive care. Furthermore, the persistence of functional disability and long-term cardiovascular sequelae in COVID-19 survivors suggests that convalescent patients may suffer from post-acute COVID-19 syndrome, requiring long-term care and personalized rehabilitation. However, the pathophysiology of acute and post-acute manifestations of COVID-19 is still under study, as a better comprehension of these mechanisms would ensure more effective personalized therapies. To date, mounting evidence suggests a crucial endothelial contribution to the clinical manifestations of COVID-19, as endothelial cells appear to be a direct or indirect preferential target of the virus. Thus, the dysregulation of many of the homeostatic pathways of the endothelium has emerged as a hallmark of severity in COVID-19. The aim of this review is to summarize the pathophysiology of endothelial dysfunction in COVID-19, with a focus on personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction as an attractive therapeutic option in this clinical setting.

3.
Biomedicines ; 10(4):812, 2022.
Article in English | MDPI | ID: covidwho-1762067

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a worldwide emergency, until the declaration of the pandemic in March 2020. SARS-CoV-2 could be responsible for coronavirus disease 2019 (COVID-19), which goes from a flu-like illness to a potentially fatal condition that needs intensive care. Furthermore, the persistence of functional disability and long-term cardiovascular sequelae in COVID-19 survivors suggests that convalescent patients may suffer from post-acute COVID-19 syndrome, requiring long-term care and personalized rehabilitation. However, the pathophysiology of acute and post-acute manifestations of COVID-19 is still under study, as a better comprehension of these mechanisms would ensure more effective personalized therapies. To date, mounting evidence suggests a crucial endothelial contribution to the clinical manifestations of COVID-19, as endothelial cells appear to be a direct or indirect preferential target of the virus. Thus, the dysregulation of many of the homeostatic pathways of the endothelium has emerged as a hallmark of severity in COVID-19. The aim of this review is to summarize the pathophysiology of endothelial dysfunction in COVID-19, with a focus on personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction as an attractive therapeutic option in this clinical setting.

4.
J Clin Med ; 11(5)2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1732088

ABSTRACT

BACKGROUND: Endothelial dysfunction has been proposed as the common pathogenic background of most manifestations of coronavirus disease 2019 (COVID-19). Among these, some authors also reported an impaired exercise response during cardiopulmonary exercise testing (CPET). We aimed to explore the potential association between endothelial dysfunction and the reduced CPET performance in COVID-19 survivors. METHODS: 36 consecutive COVID-19 survivors underwent symptom-limited incremental CPET and assessment of endothelium-dependent flow-mediate dilation (FMD) according to standardized protocols. RESULTS: A significantly higher FMD was documented in patients with a preserved, as compared to those with a reduced, exercise capacity (4.11% ± 2.08 vs. 2.54% ± 1.85, p = 0.048), confirmed in a multivariate analysis (ß = 0.899, p = 0.038). In the overall study population, FMD values showed a significant Pearson's correlation with two primary CPET parameters, namely ventilation/carbon dioxide production (VE/VCO2) slope (r = -0.371, p = 0.026) and end-tidal carbon dioxide tension (PETCO2) at peak (r = 0.439, p = 0.007). In multiple linear regressions, FMD was the only independent predictor of VE/VCO2 slope (ß = -1.308, p = 0.029) and peak PETCO2 values (ß = 0.779, p = 0.021). Accordingly, when stratifying our study population based on their ventilatory efficiency, patients with a ventilatory class III-IV (VE/VCO2 slope ≥ 36) exhibited significantly lower FMD values as compared to those with a ventilatory class I-II. CONCLUSIONS: The alteration of endothelial barrier properties in systemic and pulmonary circulation may represent a key pathogenic mechanism of the reduced CPET performance in COVID-19 survivors. Personalized pharmacological and rehabilitation strategies targeting endothelial function may represent an attractive therapeutic option.

5.
J Pers Med ; 12(3)2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-1709667

ABSTRACT

BACKGROUND: After the acute disease, convalescent coronavirus disease 2019 (COVID-19) patients may experience several persistent manifestations that require multidisciplinary pulmonary rehabilitation (PR). By using a machine learning (ML) approach, we aimed to evaluate the clinical characteristics predicting the effectiveness of PR, expressed by an improved performance at the 6-min walking test (6MWT). METHODS: Convalescent COVID-19 patients referring to a Pulmonary Rehabilitation Unit were consecutively screened. The 6MWT performance was partitioned into three classes, corresponding to different degrees of improvement (low, medium, and high) following PR. A multiclass supervised classification learning was performed with random forest (RF), adaptive boosting (ADA-B), and gradient boosting (GB), as well as tree-based and k-nearest neighbors (KNN) as instance-based algorithms. RESULTS: To train and validate our model, we included 189 convalescent COVID-19 patients (74.1% males, mean age 59.7 years). RF obtained the best results in terms of accuracy (83.7%), sensitivity (84.0%), and area under the ROC curve (94.5%), while ADA-B reached the highest specificity (92.7%). CONCLUSIONS: Our model enables a good performance in predicting the rehabilitation outcome in convalescent COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL